

MASTER OF MEDICINE (OPHTHALMOLOGY)

Department of Ophthalmology and Visual Science
School Of Medical Sciences
Universiti Sains Malaysia
Health Campus
16150 Kubang Kerian
Kelantan

TRAINING CURICULUM FOR TRAINEES AND SUPERVISORS
UNIVERSITI SAINS MALAYSIA

MASTER OF MEDICINE (OPHTHALMOLOGY)

1. Aim

A four-year post-graduate training program in Ophthalmology.

2. Background

The Ophthalmology Unit of Hospital Universiti Sains Malaysia (Hospital USM) was established in 1984, and was subsequently upgraded to the level of an Ophthalmology Department in the nineties, coincident with the establishment of the Master of Medicine (Ophthalmology) program. The program kicked off in 1997 with its first intake of 10 local trainees. Accepting international students since 2004, USM has graduated almost 210 ophthalmologists and fellows in different subspecialties to date, and currently has approximately 80 trainees in our Masters programme.

We work closely with other two universities providing postgraduate programs in Malaysia; Universiti Malaya and Universiti Kebangsaan Malaysia. The interuniversity collaboration was further strengthened with the formation of the flagship of the Malaysian Universities Conjoint Committee of Ophthalmology (MUCCO). With this Committee, the syllabus and examination format have been standardised to ensure that the quality of graduates produced are of the highest calibre. Currently, all ophthalmology postgraduate trainings are conducted based on the standards set by the national level.

MUCCO has established an electronic data base, National Ophthalmology Training and Education Database (NOTeD) to allow trainees to easily maintain a record of their training activities. By partnering with the local universities and Ministry of Health as a conjoint committee, we hope to unify the teaching, training and examination of ophthalmology graduates.

Our ophthalmology training program is a mixed-module mode, with a two year out-campus placement for distance learning to allow local trainees to familiarise themselves in ophthalmology before they enter the university campus, while it is a four year program for international trainees. All trainees will have access to teaching facilities available in the campus including a medical library, computer aided laboratory, clinical skill center and other research support. Teaching staff strength now stands at 12 lecturers.

Further collaboration with international ophthalmology centers abroad is integral to our program. We have a close partnership with Singapore, and have been privileged to have their visiting consultants grace us with their presence, both for our exam preparation courses and our Masters of Medicine examinations.

3. Structure of course

The training is divided into 3 phases.

Phase I (year 1) : Basic sciences in ophthalmology

Phase II (year 2 & 3) : Clinical training in ophthalmology

Phase III (year 4) : Specialist in training

Please refer to Appendix I for further details

4. Mode of teaching and learning

Various modes used to achieve learning objectives include

- Notes, articles, references and audiovisual material
- Lectures and seminars
- Self-directing learning, including reading lists
- Clinical activities including clinics, ward management, preparation, planning and executing operative procedures, post-operative care and on-call duties
- Participation in academic and research activities
- Writing up of dissertation

5. Supervision and progress reports

The medical school will appoint a qualified ophthalmologist to be a supervisor for each candidate. The supervisor is responsible for the progress report of the candidate.

6. Examination and assessment

Assessment during the course is divided into 2 parts

- Continuous assessment
- Examination (annual and end-phase examinations)

Professional I examination consists of continuous assessment and an examination. Passing this component of phase I assessment is a prerequisite for admission to Phase II.

Phase II and III (year 2 & 3) likewise involves continuous assessment, with an examination at the end of year 3 (**Professional II examination**). Passing this component of phase II assessment is a prerequisite for admission to Phase III.

Phase III (year 4) involves continuous assessment and a dissertation viva at the end of year 4 (**Phase III assessment**).

7. Entrance criteria

- a) Candidate must hold a recognized medical degree.
- b) Candidate must have passed the national basic sciences examination.
- c) Candidates must be registered to practice medicine in Malaysia
- d) Candidates are required to appear for an entrance interview.

8. Exemption

Exemptions from the entrance criteria are based on the discretion of the Malaysian Universities Conjoint Committee in Ophthalmology.

9. Duration of training

The minimum duration of training is four (4) years with a maximum of seven (7) years.

10. Curriculum and syllabus

The syllabus that will be used is attached (**Appendix II**). However, the syllabus will be updated from time to time in view of the progress in this field of specialty.

11. Academic and Teaching Staffs

All academic staff at the Department of Ophthalmology and Visual Sciences, School of Medical Sciences will be involved in teaching activities.

12. Administrative committee

The Department of Ophthalmology and Visual Sciences, School of Medical Sciences, will be responsible in organizing and monitoring the program, preparing teaching schedule and organizing seminars pertaining to the program.

13. Administration of Examination

The Medical School will coordinate and execute all examination. The result will be discussed at the Examination Board before approval by the Medical School Board and Malaysian Universities Conjoint Committee of Ophthalmology.

Appendix I: Program Structure

PHASE	YEAR	CURRICULUM
I	1	Basic Medical Sciences Basic Ocular Sciences Optics and Refraction Introduction to Clinical Ophthalmology
Professional I Examination		
II	2 & 3	Clinical Ophthalmology Scientific Presentations Case Reports / Publications Submission Dissertation Protocol & Ethical Approval Conduct Dissertation Project
Professional II Examination		
III	4	Advanced Ophthalmology Specialist-in training Scientific Presentations Case Reports / Publications Submission Conduct and Complete Dissertation Project Dissertation Submission Elective Posting
Phase III Assessment		

Appendix II: Syllabus

PHASE I

1.1. Basic Sciences (General and Ocular)

1.1.1. Anatomy

1. The cranial cavity

Osteology of the skull including bony orbit

Meninges, blood supply, nerve supply

Venous sinuses

Foramina and their contents

Cranial fossae

Pituitary gland and its relations

Trigeminal ganglion

2. Central nervous system

Cerebral hemispheres and cerebellum

Surface appearance

Internal structure

Cortical areas

Ventricles

Formation and circulation of cerebrospinal fluid

Blood supply and venous drainage

Microscopic anatomy

Brain stem

Midbrain

Pons

Medulla and fourth ventricle

Nuclei of cranial nerves

Cranial nerves

Origin, course and distributions

Spinal canal

Spinal cord, venous plexus, meninges and subarachnoid space

Visual pathways – visual cortex, cortical connections and

association areas

Structures involved in control of eye movements

Autonomic nervous system and the eye

3. Head and neck anatomy

Nose, mouth and paranasal sinuses

Lateral wall of nose, septum, vessels and nerves, osteology,

anatomy, relations and development of air sinuses

The face and scalp - muscles, nerves and vessels, temporal fossa,

zygomatic arch, salivary glands and temporomandibular joints

The inferotemporal fossa and pterygopalatine fossa – muscles,

nerves

and vessels, carotid sheath, pterygopalatine ganglion

General topography of the neck – posterior triangle, anterior triangle,

suprahyoid region, pre vetebral region, root of neck

Respiratory system – the anatomy of mouth, pharynx, soft palate and

larynx with particular reference to bulbar palsies and tracheostomy Lymphatic drainage of the head and neck

4. Histology

Knowledge of histological structure of tissues. Particular attention should be paid to the histological appearance of the structures of the head and neck especially in relation to their functions

5. Embryology

General embryology with particular emphasis to structures of the head and neck

1.1.2. Physiology

General physiology

Maintenance of homeostasis: osmolarity, osmotic and oncotic pressure

Transport processes in systems and tissues

Molecular events: the role of calcium in regulation of cell processes

Normal nutritional requirements

General metabolic response to trauma and sepsis

2. Nerve and muscle

Structure and function of nerve cell

Resting membrane potential, action potential and its propagation, synaptic potentials

The motor unit, neuromuscular junction and molecular events

Smooth muscle

Pain and its control

3. Autonomic nervous system

Organization and anatomy, cholinergic transmission, adrenergic transmission

4. Blood

Composition and function of blood

Iron metabolism, erythropoesis and anaemia

Plasma components

Blood groups

Blood clotting and fibrinolysis

5. Respiratory system

Respiratory mechanisms including lung mechanics, volumes and control of ventilations

Pulmonary blood flow including ventilation-perfusion ratio

CO2 and O2 transport, carriage and distribution

Gas exchange in lung

Assessment of pulmonary function

Respiratory failure and other common derangements of

respiratory function

Oxygen therapy and ventilatory support

6. <u>Cardiovascular system</u>

Blood pressure

The cardiac cycle

Control, excitation and conduction in heart

Control of circulation

Blood vessels and transcapillary exchange, measurement of blood

flow

Pathophysiology and management of shock

7. Acid-base balance / metabolism

PH-buffers-acid-base balance

Bicarbonate/CO2 buffer

Disturbances of acid-base balance

Nutrition

8. Renal system

Renal circulation

Glomerular filtration

Tubular function

Salt and water: hormonal control and water balance

Kidney in control of acid-base balance

Renin-angiotensin system

Disturbances of fluid and electrolyte balance

9. Endocrine system

Hormones, receptors and secondary messengers

Hypothalamic-hypophyseal system

Adrenal cortex, synthesis of glucocorticoids and steroid hormones

Thyroid hormones

Calcium and phosphate homeostasis

Carbohydrate metabolism: pancreatic hormones

10. Central nervous system and special senses

Cerebrospinal fluid

Superficial senses, proprioception, monosynaptic and polysynaptic reflexes, synaptic inhibition

Central processing of sensory input

Cerebellar function in motor control

Cerebral cortex in control of movement

Basal ganglia

Organization within cervical and thoracic spinal cord

1.1.3. Molecular and cell biology

Cellular biochemistry

Organization of cell organelle, plasma membrane, cytoskeleton, nucleus;

cell to cell communication; ion and solute transport

Protein and acid nucleic synthesis: molecular biology

Connective tissue and extracelullar matrix

Collagen; synthesis/degradation

Basal lamina; collagen, laminin; Fibronektin; Proteoglikans; Glycoprotein

Receptor, signal transduction and second messenger

Adenylate cylase, hormone receptor, protein-F, phosphoinosystide system

Atrial natriuretics factor

Active oxygen species

Free radical and H2O2, scavenger; lipid peroxidase, phospholipase A

Ecosanoids

Prostaglandins, Leukotrines

Enzymes that metabolize drugs (cytochrome P450 and multifunction oxidase group)

1.1.4. Pathology

1. Inflammation

Acute inflammation: chemical and cellular mechanisms

Wound healing

Chronic inflammation: granulomata, granulation tissue, ulceration, immune mechanisms, chemical mediators in response to infection and tissue injury

Graft rejection

2. <u>Disturbances of growth</u>

Atrophy, hypertrophy, hyperplasia and metaplasia

3. <u>Degenerations</u>

Calcification, hyaline, amyloid

4. Aging

Mechanisms including apoptosis

5. Neoplasia

Morphological and cellular characteristics of benign versus

malignant tumours

Carcinogenesis

Gene control

Oncogenes

Effects of irradiation and cytotoxic drugs

Environmental factors

6. <u>Vascular disorders</u>

Atheroma

Thrombosis

Embolism

Ischaemia and infarction

Hypertension

Aneurysms

Diabetes

Angiogenesis

7. Shock and trauma

Response to surgical, chemical and radiation trauma

Principles of the pathological effects of head injury

1.1.5. Microbiology

1. Principle of infection

2. Culture media

3. Bacteria

Gram staining and classification

Exotoxins and endotoxins

Mechanism of virulence and pathogenicity

Synergistic infections

Antibiotics: including mechanisms of action, bacterial resistance

Host defence mechanisms against bacterial infection

4. <u>Viruses</u>

Classification

Structure and replication

Host defence against viral infection

Antiviral agents: mechanism of action

Laboratory methods for viral detection

5. HIV and AIDS

Classification, diagnosis, laboratory diagnosis and monitoring of HIV

infection

Opportunistic infections

Anti-HIV agents

6. Fungi

Classification

Host factors which predispose to fungal infection

Antifungal agents

7. Others

Toxolasmosis

Chlamydia

Acanthamoeba

Helminthic infections

Antimicrobials

1.1.6. Immunology

Innate and acquired immunity

Effector mechanisms of immune response

Humoral immunity and antibody class and function

Cellular immunity

Immunity against microbes

T and B cells: cluster differentiation, phenotype, T and B cell activation

MHC antigens, antigen presenting cells and antigen processing

Immune mechanism of tissue damage

Interleukins, complements

Immunodeficiency and immunosuppression

Organ transplantation and pathophysiology of allograft rejection

1.1.7. Pharmacology

Pharmacokinetics and pharmacodynamics

Drug receptor and secondary messengers: cellular mechanisms of drug

action

Cholinergic and adrenergic systems

Serotonin

Histamine

Anti-inflammatory agents

Anti-infective agents

Immunosuppressants

Local anaesthetics

Analgesics

Mechanisms of drug toxicity

1.1.8. Genetics

Chromosomes and cell division

Methods of genetic analysis

Mandelian inheritance

X-linked inheritance

Mitochondrial inheritance

Linkage analysis, disequilibrium and population genetics

Chromosome mapping

Gene mutations

Oncogenes and genetics of malignancy

Principles of gene therapy

1.2. Ocular Sciences

1.2.1. Anatomy of visual and ocular system

Orbit and paranasal sinuses

Ocular appendages

Eyeball

Surface anatomy as seen under slit lamp

Extraocular muscles

Orbital nerves

Visual pathway

Orbital autonomic system

Embryology of the eye

1.2.2. Physiology of visual and ocular system

Function of eyelid

Lacrimal apparatus

Physiology of cornea

Somatic sensation

Control of ocular movement and extraocular muscles

Ocular circulation

Aqueous humour

Intraocular pressure

Vitreous

Lens

Pupil and accommodation

Retina and optic nerve

Photochemistry

Electrical phenomenon in the retina

Physiology of visual pathway

Colour vision

Entoptic phenomenon

Binocular vision

Visual adaptation

Time related visual function

1.2.3. Introduction to ocular pathology

- To describe ocular anatomy and to identify the histology of major structures of the eye e.g. conjunctiva, sclera, cornea, anterior chamber angle, iris, ciliary body, lens, vitreous, retina, retinal pigment epithelium, choroid and optic nerve
- To describe basic pathophysiology of the common disease processes
 of the eye and to identify the major histological findings of each e.g.
 wound healing, infection, inflammation, neoplasm
- 3. To identify the histology of important intraocular and adnexal diseases
 - e.g. endophthalmitis, retinoblastoma, choroidal melanoma, microbial keratitis
- 4. To describe common basic ophthalmic-related immunology

1.2.4. Basic optics and principles of ophthalmic instruments

1. Physical Optics

Features of light

Defraction

Interefens

Resolution

Polarization

Refraction

Transmission and resorption

Photometry

Laser

2. Geometry Optics

Reflection

Refraction

Prisms

Spherical lenses

Astigmatic lenses

Optical prescription

Identification of lenses

Aberration of optical systems

3. <u>Introduction to Clinical Optics</u>

Ocular optic

Refraction by the eye

Reduced schematic eye

Pupillary response (Styles Crowford effect)

Visual acuity

Contrast sensitivity

Catoptric images

Emmetropia

Accomodation

Perkinje image

Principle of pinhole

4. <u>Instruments</u>

Direct ophthalmoscope

Indirect ophthalmoscope

Retinoscope

Simple magnification glass (Loupe)

Focimeter

Lensometer

Automated refractometer

Slit lamp microscope - including technique of examination

Keratometer

Applanation tonometer

Corneal pachymeter

Specular microscope

Principle of zoom lens

Operating microscope

Gonioscope

Hruby lens, 90D etc.

Fundus lenses (Panfunduscope lens and Goldmann)

Fundus camera

Synoptophore

Stereoscopic test

Lees screen / Hess chart

5. Principles of LASER in Ophthalmology

Basic concept

Argon Laser

Nd:YAG laser

Excimer laser, diode, krypton and CO2 laser

Historical aspect

Lenses use in LASER therapy

6. <u>Ultrasound in Ophthalmology</u>

Principle of sound wave

A-scan and B-scan

Diagnostic ultrasound

1.2.5. Clinical refraction

Ametropia

Accommodation disorders

Refractive error

Ametropia correction

Glasses problem in aphakic patient

The effect of glasses and contact lens to accommodation and convergence

Effective power of lenses

Back vertex distance

Spectacle magnification

Intraocular lens power calculation

Presbyopia

Low visual aids

Retinoscopy

Subjective refraction

Back vertex distance calculation

Accommodative power

Interpupillary distance

Lens decentration and prismatic effect

Advantages of lens

Glass prescription to children

Cycloplegic refraction

PHASE II and III

2.1. Clinical ophthalmic pathology

Inflammation and immune related eye disease

Ocular inflammation – specific and idiopathic

Sympathetic ophthalmia

Pathology of external eye

Eyelid growth and lesion

Uveal tract growth

Lens disorders

Retinal degenerative diseases

Retinal vascular diseases

Neuroepithelial growth

Glaucoma

Optic nerve lesion

Phacomatosis

Lymphoid tissue growth

Congenital defect

Injury and surgical trauma

2.2. External eye disease

Eyelids inflammatory disease and pseudotumour

Bacterial conjunctivitis

Ophthalmia neonatorum

Follicular conjunctivitis

Phlyctenulosis conjunctivitis

Vernal conjunctivitis

Conjunctival growth

Therapeutic hydrogel lens

Skin and mucous membrane bullous disorder

Lacrimal drainage system

Diagnosis and treatment of dry eye

2.3. Uveal disease

Fluorescein angiography

Uveitis work-up

Uveal biopsy

Ocular albinism

General facts in uveitis

Pathogenesis of uveitis

Aetiology of uveitis

Treatment of uveitis

Bacterial uveitis (including tuberculosis and syphilis)

Viral uveitis

Uveitis - presumed viral aetiology

Presumed ocular histoplasmosis

Mycotic uveitis

Toxoplasmosis

Uveitis and parasites

Uveitis and general diseases

Hypersensitivity uveitis

Postoperative uveitis

Paediatric uveitis

Other types of uveitis

Trauma: laceration and hemorrhage

Trauma: inflammation Ciliochoroidal effusion

Iris atrophy and degeneration

Choroidal atrophy and degeneration

Uveal tumours

2.4. Retinal disease

Fluorescein angiography

Clinical visual electrophysiology

Colour vision

Congenital fundus disorder

Hereditary macular dystrophy

Retinal inflammatory disease

Fungal endogenous endophthalmitis

Hypertension and arteriosclerosis

Retinal periphlebitis

Sickle cell retinopathy

Blood dyscrasia retinopathy

Retinopathy of prematurity

Age related macular degeneration

Systemic lupus erythematosus retinopathy

Vascular fundal disorder

Acquired maculopathies

Primary retinal degeneration

Choroideremia and gyrate atrophy

Retinal degenerative disease

Rhegmatogenous retinal detachment

Retinopathy related to metabolic disorder

Diabetic retinopathy

Blunt trauma to the posterior segment

Intraocular tumours

Toxic retinopathy

Radiation retinopathy

Changes and diseases of vitreous

2.5. Lens disease

Examination and measurement of lenses

Types of cataracts and complication of cataract

Congenital lens disorders

2.6. Orbital disease

Introduction to orbital diseases and technique of examination

Radiology of orbit

CT-scan of orbit

Introduction to ophthalmic ultrasound

Ocular and orbital ultrasonography

Neuro-ophthalmic view of orbital diseases

Congenital orbital disorders and growth abnormalities

Cystic tumour

Introduction to ultrastructure, inflammation and neoplasia

Eye and orbital changes in Graves disease

Vascular tumour, malformation and degeneration

Lymphoma, plasma, histogytic and haemopoitic

Lacrimal gland tumour

Neurogenic tumour

Optic nerve glioma

Rhabdomyoscarcoma

Mesenchyme and fibro-osseous tumour

Orbital metastasis tumour

Orbital bone fracture

2.7. Visual pathway disease

Diagnosis: prechiasma

Diagnosis: optic chiasma

Diagnosis: retrochiasma and cortical function

Extraocular movement and technique of data recording

Supranuclear and ocular motility disorder

Nystagmus and ocular movement

Infranuclear and ocular motility disorder

Congenital optic disc disease

Pupil and accommodation

Aneurysm, A-V malformation and other related vascular disease

Migraine

2.8. Ocular motility disease

Extraocular muscle and extraocular movement

Nerves that innervate the extraocular muscles

Supranuclear area and extraocular movement

Binocular single vision

Alignment

Vergence

Sensorial adaptation in strabismus

Sensorial tests

Amblyopia

Treatment of sensorial adaptation and amblyopia

Concomitant esodeviation and concomitant exodeviation

Monofixation syndrome

Concomitant vertical deviation

A and V pattern

Oblique muscle dysfunction

Dissociated vertical deviation

Cranial nerve palsies

Trauma and ophthalmoplegia syndrome

2.9. Glaucoma

Use of gonioscopy

Aqueous humor dynamics

Tonography and tonometry

Visual field changes

Congenital glaucoma

Primary open angle glaucoma

Primary angle closure glaucoma

Secondary glaucoma

Glaucoma and cataract

Changes in glaucoma treatment

Glaucoma surgery

Problems in glaucoma treatment

Postoperative hypotony

2.10. Medical ophthalmology and neuro-ophthalmology / neurosurgery

Ocular manifestation of endocrine and metabolic diseases

Cardiovascular disease

Haematology disease

Respiratory disease

Connective tissue disease

Allergy and immunology of external eye disease

Muscle and bone disease

Dietary and gastrointestinal disease

Renal disease

Infection and inflammatory disease

Metastasis to the eye and ocular adnexa

Chromosomal disease

Phacomatosis

Perinatal ophthalmology

Glaucoma and systemic disease

Cataract and systemic disease

Retinal disorder and systemic disease

Corneal disorder and systemic disease

Systemic and ocular manifestation in child abuse

2.11. Preventive ophthalmology

Introduction to preventive ophthalmology

Causes of blindness

Epidemiology of blindness

Ophthalmology screening program

Ocular surgery in developing countries

Preventive methodology

Food-blindness: xeropthalmia and keratomalacia

Pathogenesis and prevention of trachoma

Onchocerciasis

Ocular leprosy

Epidemiology and clinical research

Statistics in clinical research

2.12. Therapeutics

Drugs used in treating ocular diseases

Ocular side effects of systemic drugs

2.13. Paediatric ophthalmology and strabismus

Ocular congenital defects

Hereditary diseases

Paediatric eye diseases, orbit and visual pathway diseases

Ocular manifestation of paediatric diseases

Refractive error and ambylopia

Anisometropia

Allergic conjunctivitis

Congenital ptosis

Type of strabismus

Management of strabismus

Principle of strabismus surgery

Retinopathy of prematurity

2.14. Ophthalmic surgeries

Principles of ophthalmic surgeries

Preoperative assessment

Techniques in operation theatre

Instruments, suture and technique of suturing

Cryotherapy, laser surgery, diathermy and cautery

Lids surgery

Extraocular muscle surgery

Lacrimal system surgery

Orbital surgery

Reconstructive surgery

Complications of surgery

Postoperative treatment

2.15. Others

Tests for ophthalmic disease including CT-scan and MRI

Ocular trauma

Genetic counseling

Rehabilitation for blinds

Current views and issues